003
11.03.2014, 10:15 Uhr
sas
|
Hallo Ralph,
die CRC, die in der T-316 gespeichert - gebildet werden, stimmen das habe ich geprüft.
In Wiki steht: Andere Startwerte
Die Implementierung führt eine Polynomdivision aus, wenn als Startwert 0000… verwendet wird. Oft findet man andere Startwerte, etwa 1111…. Dies entspricht einer Polynomdivision, wenn die ersten n Bits des Datenstroms invertiert werden.
Ein Startwert ungleich 0000… ist vorzuziehen, da fehlende Bits innerhalb führender Nullen im Datenstrom sonst nicht erkannt werden (ebenso wie bei einer gewöhnlichen Division zählen bei einer Polynomdivision führende Nullen nicht).
Sowie was ich auch vermutete, weil die CRC auch auf die zu sendende Information gebildet wird, das Nullproblem. Zitat: Nullproblem und Nachbearbeitung
Eine weitere Problematik stellt das Nullproblem dar, welches in zweierlei Form auftritt:
Produziert ein Datenstrom zufällig einen CRC gleich null, so ist der CRC auch dann null, wenn dem Datenstrom zusätzliche Nullen angehängt werden, oder – falls der Datenstrom mit einer oder mehreren Nullen endet – einige dieser letzten Nullen entfernt werden. Ist dem Ende des Datenstroms der CRC angehängt (so wie es ein Sender eben verschickt) und bei der Übertragung werden (nach dem gesendeten CRC) noch zusätzliche Nullen angefügt, so können diese zusätzlichen Nullen am Ende nicht erkannt werden.
Das Nullproblem in beiden Ausführungen ist unabhängig davon, ob Startwerte gleich null oder ungleich null verwendet werden.
Das Nullproblem in beiden Ausführungen wird vermieden, indem die Bits des CRC-Ergebnisses invertiert werden. Erfolgt im Empfänger die CRC-Prüfung derart, dass der Empfänger einen CRC aus dem empfangenen Datenpaket berechnet, wobei das Datenpaket aus Datenstrom und angehängtem CRC besteht, so ist im Falle eines unveränderten (nichtinvertierten) CRC des Senders der berechnete CRC im Empfänger stets null. Im Falle eines invertierten CRC des Senders ist der berechnete CRC im Empfänger immer der gleiche Wert, dieser wird auch als Magic Number bezeichnet.
Das Nullproblem der zweiten Ausführung kann auch vermieden werden, indem die Reihenfolge der CRC-Bits umgekehrt wird. Unerkannt bleibt jedoch der Fall, wo der CRC gleich null ist, was das Nullproblem der ersten Art darstellt.
Das bisher beschriebene Nullproblem bezieht sich also auf die Problematik, am Ende des Datenstroms zusätzlich hinzugefügte oder verlorengegangene Nullen zu erkennen. Dies ist jedoch nur dann nötig, wenn aufgrund vorherrschender Randbedingungen nicht sichergestellt werden kann, dass die Größe der Daten unverändert bleibt.
Von einem Nullproblem spricht man jedoch bisweilen auch dann, wenn es problematisch ist, wenn ein Datenstrom aus lauter Nullen auch einen CRC gleich Null erzeugt. Ein CRC gleich Null aus Null-Daten entsteht unabhängig vom Generatorpolynom grundsätzlich, wenn der CRC-Startwert gleich null ist und die Bits des resultierenden CRC nicht invertiert werden. Dieses Problem kann somit vermieden werden, indem ein Startwert ungleich null festgelegt wird oder aber auch die resultierenden CRC-Bits invertiert werden.
Der bekannte CRC-32 verwendet sowohl 1111... als Startwert als auch ein inverses Ergebnis. Bei CRC-16 wird ebenfalls meist 1111.. verwendet, das Ergebnis jedoch nicht invertiert. In beiden Fällen bleibt die Reihenfolge der CRC-Bits unverändert.
Auch dient bekanntermaßen die richtige Wahl des Initialisierungsvektor/Polynom zur Erkennung von CRC Fehlern: Erkannte Fehler
Ist das CRC-Polynom gut gewählt, können mit dem oben beschriebenen Verfahren alle Einbitfehler, jede ungerade Anzahl von verfälschten Bits, sowie alle Bündelfehler der Länge \leq r erkannt werden, wobei r der Grad des CRC-Polynoms ist. Zusätzlich werden alle Fehler (also auch unabhängige Vierbit-, Sechsbit-, Achtbitfehler, u.s.w.) erkannt, deren Polynomdarstellung einen kleineren Grad als das CRC-Polynom hat. Zweibitfehler werden entgegen der landläufigen Meinung nicht grundsätzlich erkannt. Warum das so ist bzw. wie das CRC-Polynom zu wählen ist, folgt aus den kommenden Überlegungen.
Sei G(x) das CRC-Polynom (Generatorpolynom) und T(x) die Polynomdarstellung der um den CRC-Wert erweiterten zu übertragenden Bitfolge. Wenn ein Fehler bei der Übertragung auftritt, kommt (in Polynomdarstellung) beim Empfänger nicht T(x), sondern T(x)+E(x) an. Die zu E(x) gehörende Bitfolge hat an jeder Bitposition, die bei der zu übertragenden Bitfolge invertiert bzw. verfälscht wurde, eine 1. Wenn der Empfänger die um den CRC-Wert erweiterte Bitfolge erhält, berechnet er (T(x)+E(x))/G(x). Da T(x)/G(x)=0 (per Definition von T(x)), ist das Ergebnis E(x)/G(x).
Auf der Seite sind auch alle "bekannten" Polynome aufgeführt. (ganz unten) http://de.wikipedia.org/wiki/Zyklische_Redundanzpr%C3%BCfung |